Modeling Hydrogen in U.S. Energy Systems US-REGEN Approach

Geoffrey J. Blanford, Ph.D. Sr. Technical Executive, Energy Systems and Climate Analysis Electric Power Research Institute (EPRI)

U.S. Hydrogen Workshop March 24, 2022

 Image: marked bit in the second se

More information at

https://esca.epri.com

Framework for understanding drivers of change in the electric sector and energy system
 Supported by EPRI engineering expertise and technology projections

Economy-Wide Low-Carbon Energy Pathways

Hydrogen's role in current energy industry

US 2019 Energy Flows (quad btus)

5

Emissions / Capture rate

Hydrogen Production Technology Assumptions (1/2)

"Breakthrough" PEM scenario

	Current	2035	2050
Capital Costs (\$/mmbtu H2/year)			
Conventional Steam methane reforming (NG $ ightarrow$ H2)	23.6	23.6	23.6
"Blue" hydrogen (NG \rightarrow H2 with carbon capture)	53.9	44.6	34.8
Biomass gasification	31.4	24.7	21.5
Biomass gasification with carbon capture	37.1	29.1	25.4
Electrolysis (alkaline)	60.6	37.1	28.7
Electrolysis (central-scale PEM)	87.1	38.1 24.8	14.3 <i>6.0</i>
Electrolysis (distributed-scale PEM)	87.1	47.8 31.1	22.5 <i>9.3</i>
Electrolysis (high-temp solid oxide)	269.7	77.1	22.0
Energy Consumption (mmbtu fuel in/mmbtu H2 out)			
Conventional Steam methane reforming (NG $ ightarrow$ H2)	1.31 (NG)	1.31 (NG)	1.31 (NG)
"Blue" hydrogen (NG $ ightarrow$ H2 with carbon capture)	1.47 (NG)	1.47 (NG)	1.47 (NG)
Biomass gasification	2.25 (Bio)	2.25 (Bio)	2.25 (Bio)
Biomass gasification with carbon capture	2.25 (Bio)	2.25 (Bio)	2.25 (Bio)
Electrolysis (alkaline)	1.43 (Ele)	1.43 (Ele)	1.43 (Ele)
Electrolysis (central-scale PEM)	1.50 (Ele)	1.39 (Ele)	1.38 (Ele)
Electrolysis (distributed-scale PEM)	1.50 (Ele)	1.39 (Ele)	1.38 (Ele)
Electrolysis (high-temp solid oxide)	1.20 (Ele) + 10% heat	1.09 (Ele) + 10% heat	0.98 (Ele) + 10% heat

Hydrogen Production Technology Assumptions (2/2)

	Current	2035	2050
Annual Fixed Operating Costs (\$/mmbtu H2/year)			
Conventional Steam methane reforming (NG $ ightarrow$ H2)	1.69	1.69	1.69
"Blue" hydrogen (NG \rightarrow H2 with carbon capture)	3.84	3.18	2.48
Biomass gasification	2.26	1.77	1.55
Biomass gasification with carbon capture	2.62	2.06	1.80
Electrolysis (alkaline)	2.75	0.88	0.68
Electrolysis (central-scale PEM)	1.74	0.68	0.33
Electrolysis (distributed-scale PEM)	1.74	0.96	0.45
Electrolysis (high-temp solid oxide)	5.39	1.54	0.44
Variable Non-Fuel Operating Costs (\$ per mmbtu H2)			
Conventional Steam methane reforming (NG $ ightarrow$ H2)	0.28	0.28	0.28
"Blue" hydrogen (NG \rightarrow H2 with carbon capture)	0.28	0.28	0.28
Biomass gasification	3.93	3.09	2.70
Biomass gasification with carbon capture	4.91	4.06	3.66
Electrolysis (alkaline)	1.76	0.56	0.40
Electrolysis (central-scale PEM)	2.63	1.49	0.79
Electrolysis (distributed-scale PEM)	2.63	1.49	0.79
Electrolysis (high-temp solid oxide)	4.27	2.33	0.39

Hydrogen Storage Technology Assumptions

	Estimate 1	Estimate 2		
Storage energy capacity ("room") (\$ per kg)	24	12	Geology, excavation, brine disposal, cushion gas	
Storage withdrawal capacity ("door") (\$ per kg per day)	120	240	Compression, well drilling and completion	
Total cost of benchmark facility of 500 tH ₂ "room"; 50 tH ₂ /day "door"	\$18M	\$18M	10-day storage	
Total cost of benchmark facility of 1000 tH ₂ "room"; 50 tH ₂ /day "door"	\$30M	\$24M	20-day storage	

LCR LOW-CARBON RESOURCES INITIATIV

https://www.sciencedirect.com/topics/engineering/salt-caverr

Uncertainty/ambiguity about break-out between "room" and "door": different studies suggest different allocations

<u>Ahluwalia et al (2019), System Level Analysis of Hydrogen Storage Options, DOE</u> <u>Lord et al (2014), Geologic storage of hydrogen: Scaling up to meet city transportation</u> <u>demands</u>, Intl Journal of Hydrogen Energy Hydrogen storage costs based on underground salt cavern reservoir, may not be available in all regions; other formation types could be used, with higher costs.

Ammonia Technology Inputs

Model Inputs

	H-B	H-B+CC	H-B Alt
Capital Cost (\$/mmbtu/yr)	66	88	42
Fixed O&M (\$/mmbtu)	5.7	7.4	3.5
Variable O&M (\$/mmbtu)	0.31	0.40	0.23
Elec input (kWh)	4	26	51
NG input (mmbtu)	1.65	1.68	
H ₂ input (mmbtu)			1.36

*Inputs normalized per mmbtu of NH*₃ *output*

Illustrative calculation assuming:

- \$3/mmbtu NG
- \$60/MWh electricity
- \$18/mmbtu hydrogen (via electrolysis)
- \$5/tCO₂ T&S
- 90% capacity factor
- 7.5% capital rental rate

Synthetic Fuel (H₂+C) Technology Inputs

Model Inputs (2050) Illustrative levelized cost of fuels 60 (actual price depends on scenario and region) Syn-NG Syn-JF **Capital Cost** 50 34 50 (\$/mmbtu/yr) CO_2 input presumed to 4.8 3.3 Fixed O&M be "atmosphere neutral", (\$/mmbtu) 40 e.g. from direct air Variable O&M 0.20 0 capture (DAC) or from \$/mmbtu (\$/mmbtu) bioenergy with capture – 30 Elec input (kWh) 34 in the latter case, a 7 complex equilibrium H₂ input (mmbtu) 1.23 1.33 emerges between 20 biofuel, synfuel, and CO₂ **CO**, input (tCO₂) 0.059 0.078 markets Inputs normalized per mmbtu of fuel output 10 Illustrative calculation assuming: 0 \$60/MWh electricity \rightarrow Synthesis of other Syn-NG Syn-JF \$18/mmbtu hydrogen (via electrolysis) liquid fuels also possible; = Methanation via = Advanced Fischer- $$200/tCO_2$ (e.g. from DAC) **REGEN** currently includes 90% capacity factor Sabatier reaction Tropsch process only the JF pathway 7.5% capital rental rate ■ Fixed Cost ■ Variable O&M+Elec ■ H2 input ■ CO2 input

Hydrogen End-Use Technologies in US-REGEN

Buildings

- Space heating
- Water heating
- Other dual fuel appliances

- Light-duty vehicles
- Medium- and heavy-duty on-road vehicles
 - Busses
 - Local freight/vocational trucks

Transportation / Non-Road Vehicles

- Long-haul freight trucks

Industry

- Direct reduced iron for steel making
- Process heat/steam in other manufacturing industries
- Existing use as industrial gas (non-energy)
- Existing use in petroleum refining

- Short-haul aviation
- Commuter, passenger, and freight rail
- Maritime

.

Non-road vehicles and equipment in agriculture, construction, and mining

Details at https://us-regen-docs.epri.com

Fuel Delivery Cost Assumptions (\$ per mmbtu)

	Residential / Home Charging	Commercial / Public/Fleet Charging	Transportation Retail Fueling Stations	Transportation Depot Fueling	Industry Small	Industry Large
Electricity	19.6 (varies by region, US average)	12.9 (varies by region, US average)	N/A	N/A	4.6 (varies by region, US average)	4.6 (varies by region, US average)
Pipeline Gas (existing NG)	7.1 (varies by region, US average)	4.7 (varies by region, US average)	Commercial price + 8 compression +3-6 taxes		1.8 (varies by region, US average)	1.8 (varies by region, US average)
Hydrogen (new pipeline)	14	11	8 + 24 (\$3/kg dispensing)	8 + 16 (\$2/kg dispensing)	8	6
Diesel Gasoline	8	6	3 + 3-6 taxes (varies by region)	3 + 3-6 taxes (varies by region)	3	3
Jet Fuel	N/A	N/A	N/A	1	N/A	N/A
Ammonia	N/A	N/A	6	6	6	4

Dispatch of Electrolysis vs Renewables

8760 Dispatch sorted by net load (= electricity demand – intermittent renewable output)

■ Nuclear ■ Hydro+PS ■ Bio-CCS ■ Bio/Oth ■ Gas-CCS ■ Gas ■ H2 ■ Battery ■ Wind ■ Solar ■ Electrolysis ■ Batt Chrg

Hourly and Weekly Profiles of Dispatch

2050 Electrolysis CF vs Electricity Price

Hydrogen Modeling Challenges

- Integrated energy system modeling needed to characterize potential role and value of hydrogen
- Electric sector interactions are particularly complex: cost of electrolysis and value of storage depend on dispatch profiles
- Uncertainty around many technology parameters, e.g.
 - Electrolysis capital costs
 - Fuel cell costs (and other end-use technologies, e.g. process heat)
 - Storage and delivery costs vary by region, scale and application
- Potential for global market interactions (e.g. shipping via NH₃)
- Impacts on water, land, air quality also need to be characterized

Together...Shaping the Future of Energy®